
$485^{3} 1 B$

From the aution to Roterigy la loga?: Geays hun $7^{\text {th D Dec. }} 1791$

A N

ACCOUNT
 OF SOME
 EXPERIMENTS

UPON A
MACHINE_

For Meafuring the
Way of a $S_{\text {hip }}$ at $S_{\text {ea }}$.

By J. SMEATON, F.R.S.

Printed in the Year MDCCLIV.
h A

$$
\begin{aligned}
& \text { H } H A D B M \\
& \text { 3MOR } 10
\end{aligned}
$$

$$
\begin{aligned}
& \text { A. } \mathrm{VOTU} \\
& 51 \text { I TI N } 1+1 \\
& \text { oib grimitrolt not } \\
& A: 2 \text { jo } 51112 \text { s } 10 \text { y } 10 \mathrm{~V}
\end{aligned}
$$

[3]

An Account of fome Experiments upon a Macbine for meafuring the Way of a Sbip at Sea.

IN the Pbilofopbical Tranfactions, $\mathrm{N}^{\circ} 391$, for November 1725 . Mr. Henry de Saumarez gives an account of a machine for meafuring a chip's way more exactly than by the log. This machine confifts of a firft mover, in the form of the letter Y . Upon the two arms of the Y are faftened two vanes, inclined in fuch a manner, that when the Y is hauled thro' the water by a rope, faftened to the ftem or tail thereof, it may turn round, and, of confequence, endeavour to turn the rope round. The other end of the rope, being faftened to the end of a findle capable of moving freely round, will be made to do fo by the rotations of the Y , communicated to the rope. A motion being thus communicated to a fpindle within the fhip, this fpindle may be made to drive a fett of wheel-work, which will regifter the turns of the Y ; and the value of a certain number of thefe turns being once found, by proper experiments, they are eafily reducible into leagues and degrees, © c c. The only difficulty then is, whether this Y will make the fame number of rotations in going the fame fpace, when it is carried through the water faft, as when it is carried flow. Upon this head Mr. de Saumarez, as well in the paper abovecited, as in a fubfequent one publifhed in Pbilof: Tranf. No 408. for March 1729. has given an account of feveral trials, which he has made of it, from which it appears, that this machine, in part, anfwers the end propofed; and is, in part, defective: The

[4]

errors of which he fuppofes to proceed from the finking down of the Y into the water, upon a flow motion; the axis of its rotation being then more oblique to the horizon than in a quick one.

In a machine, conftructed like this, it is evident, that the end of the fpindle, to which the rope is faftened, muft be of fufficient ftrength and thicknefs, not only to bear the force or ftrefs, that the hauling of the Y through the water will lay upon it, in the greateft motion of a fhip; but alfo to bear the accidental jerks, that the waves will fuperadd thereto. The thicknefs of the fpindle then being determined by thefe conditions; it is alfo manifeft, that, to prevent the findle from being pulled out of its place by the draft of the rope, there muft be a fhoulder formed upon it, which muft be greater than the part of the fpindle before defcribed, for the fpindle to bear againft. The fize, that Mr. Saumerez propofes to give to his Y , is 27 inches the whole length; 15 inches for the length of the arms (which are to be opened to a right angle); 8 inches for the length of each vane ; 4 inches and an half broad, and the ftems and fhank to be two-thirds of an inch thick. According to thefe dimenfions, the reffiftance, that this part of the machine will meet with, in paffing thro' the water, will, in the fwift motions of the fhip, be very confiderable : confequently, the neceffary bulk of the pivot-end of the fpindle, and its houlder, will occafion a confiderable friction in the turning thereof, and retardation to the rotation of the machine.

To cure thefe defects, as much as poffible, inftead of the Y before defcribed, I made trial of a fingle
plate of brafs, of about 10 inches long, 2 and an half broad, one-thirtieth of an inch thick, and cut into an oval Thape. This plate being fet a little atwift, and faftened by one end to a fmall cord, in the manner of the Y, is likewife capable of making a rotation, in being drawn through the water; but with this difference, that as this is but a fmall thin plate drawn edgeways through the water, its refiftance, in paffing through it, is much lefs; of confequence, a much fmaller line is fufficient to hold it, which again confiderably diminifhes the refiftance; and this, of courfe, proves a double diminution of friction in the fpindle: Firft, as the preffure upon it is lefs; and, fecondly, as it allows the fpindle and fhoulder to be of a lefs diameter. To break the jerks of the waves; next to the end of the fpindle I fixed a fpiral fpring of wire, to which the cord was faftened ; which, by this means, was capable of playing backwards and forwards, and giving way to the irregularities of the fea: and, left the plate fhould lay faft hold of any thing, or any extraordinary jerk fhould damage the fpindle or fpring, a knob, or button, was faftened upon the cord, at a fmall diftance from the fpring, which ftopped upon a hole in a piece of wood, and prevented the fpring from being pulled out to above a certain length; fo that all addition of force, beyond this, could only tend to break the cord, and carry away the plate. The fpindle, being thas guarded from accidents, will allow of a ftill further diminution of its fize; fo that, at laft, I ventured to make the fpindle-pivot no more than one twentieth of an inch diameter, and that of the Thoulder one-eighth; being of tempered fieel, and fufficiently fmooth.

The hole, in which the pivot, and againft which the fhoulder worked, was of agate likewife, well polifhed.

Being thus provided, in May 175 I. I procured a boat, upon the ferpentine river in Hyde-park, to try how far the turns of the machine would be confiftent with themfelves, when the fame fpace was meafured over with the fame, and with different velocities. The courfe was determined at each end, by obferving the coincidence of two trees, in a line nearly at right angles to the river. We, however, rowed beyond the mark, that the machine might be in full play when the courfe was begun : The fpindle was ftopped at the beginning and end; the numbers read off, and were as follows:

The fpace between the marks was, by eftimation, about half a mile.

It is obfervable, that the greateft difference, among the above obfervations, is between the 2 d and 6 th, being 645 and 600 ; the difference being about one fourth part of the whole; the times being $14 \mathrm{mi}-$ nutes and 10 , both in going down the river: Whereas thofe obfervations, which differ moft in point of time viz. the 3 d and 4 th, being performed in 18 minutes and an half, and 9 minutes and an half, refpectively; have their revolutions more nearly alike, being 612 and

[7]

603 ; which differ only by one fixty-eighth of the whole. From thefe obfervations I was led to think, that the different velocities, wherewith a veffel moves forwards, would make no material difference in the number of rotations of the plate; or, at leaf, that thofe differences would be lefs than the irregularities arifing from other caufes, even in trials nearly fimilar.

The next trial of this machine was on board a fmall failing veffel, in company with Dr. Knight, and Mr. William Hutchinfon, an experienced feaman, and maiter of a confiderable merchant-fhip. Our expedition was upon the river Thames, and fome leagues below the Nore. The intention of the trial here was, to find, in general, how far it agreed with the \log, and how it would behave in the fwell of the fea; a comparifon with the meafure of a real diftance being here impracticable, on account of the tides and currents.

The method of trial was this: We fuffered the whole \log-line to run out, being 357 feet between the firft knot and the end. The perfon, who hove the \log, gave notice, at the extremes of this meafure, that the perfon, who attended the dial of the machine, might fop the fpindle at the beginning and end; white a third obferved, by a feconds-watch, the time taken up in running thefe 3.57 feet. By thefe means, we were.enabled to afcertain the comparative velocity, wherewith we moved, and the number of turns of the plate at each trial, correfponding to 397 feet by the \log; which, if the machine and \log were both accurate, ought ito have been always the fame. The particulars of thefe experiments are contained in the following table.

Turins

Turns of the
Plate.
83 In the river at anchor by the tide 124
82 The fame repeated
8 I Sailing in the river . - 98
79 In the river at anchor by the tide 135
76 Sailing in the river . . 115
74 At fea upon a wind $\quad, \quad, 64$
74 The fame repeated . . . 69
7_{1} Sailing in the river . . 71
70 The fame 66
70 Before the wind at fea . . 77
70 The fame 56
70 The fame . . . 52
66 Before the wind in the river - 55
64 The fame - 53
64 The fame 60
64 The fame 43
63 At fea upon a wind
53
62 The fame : $\quad 52$
62 Sailing in the river . . 45

Seconds
of time during the running out of 357 feet of \log-line

It appears from thefe trials, made in different pofitions of the veffel with regard to the wind, both in the river and at fea, as well by the tides at anchor, as in failing, that the turns of the plate, correfponding with the fpace of 357 feet by the log, were from 62 to 83 ; and the times, in which this fpace was run, were from 45 to 135 feconds; the greater number of revolutions anfwering to the greater number of feconds, or flower movement of the veffel. Upon finding this confiderable difagreement between the \log and plate, when fwift and flow motions are compared, I did not fuppofe, that they proceeded from a retard-
retardation of the plate in fwift motions, but from the hauling home of the log in flow ones. As for inftance; the log, to do its office accurately, ought to remain at reft in the water, whatever be the motion of the veffel. But even the keeping the line ftrait, and much more the fuffering the log to haul the line off the reel (as practifed by many), will make the \log, in fome meafure, follow the veffel, and will be greater, in proportion as the time of continuance of this action is greater; and therefore the log will follow the fhip twice as far in going one knot, when the fhip is twice as long in running it. The confequence of this is, that a veffel always runs over a greater fpace than is fhewn by the log-line; but that this error is greater, in proportion as the veffel moves flower. It is this reafon, I fuppofe, that has induced the practical feamen to continue the diftance between their knots fhorter than they are directed by the theory.

Afterwards, in the fame fummer, I made fuch another expedition, in a failing veffel, along with captain Campbell of the Mary yacht, and Dr. Knight. Having prepared two of thefe machines as near alike as poffible, I determined to try, how far they were capable of agreement, when expofed to the fame inconveniencies, and ufed together. During the trial of thefe machines, one made 86,716 revolutions, and the other made 88,184. During this face, they were compared at ten feveral intervals. The revolutions between each interval differed from the proportion of thefe numbers, in the firft comparifon, onenineteenth of the whole interval. The errors of each
interval, in the other comparifons, were, in order, two-feventeenths, one-nineteenth, one-twentieth, one-fifty-fourth, one-fourteenth, one-eightieth, one-fixtyfeventh, one-fourteenth, one-fixteenth; the greateft errors being where the fpaces were the fhorteft. In other refpects, the plates feemed to perform their duty, in the water, well enough, tho' the fea was as rough, in this voyage, as our fmall veffel would well bear.

Laftly, Being, for fome time, on board the Fortune floop of war, commanded by Alexander Campbell, Efq; in company with Dr. Knight, for the purpofe of making trial of his new-invented fea-compaffes, I had frequent opportunities of making ufe of thefe machines, by comparing them with one another, with the \log, and with real diftances; and having, by repeated trials, pretty well afcertained the number of turns of the plate, that was equal to a given fpace, by the help of the \log, in the manner before defcribed, when the fhip was upon a middle velocity; I found the fpaces, fo meafured, nearly confiftent with themfelves, and with the truth: But all this while the winds and weather were very moderate. It afterwards happened, that we run 18 leagues in a brifk gale of wind, which, tho' not fair for us (being before the beam), yet drove us fometimes at the rate of 8 knots an hour, as appeared by heaving the log. During this run I obferved, that the refiftance of the water, to the line and plate, was very confiderable, and increafed the friction of the fpindle fo much, as to prevent it from beginning to turn, till the plate had twifted the line to fuch a degree, that when

[11]

when it did fet a going, it would frequently ran 150 or 200 turns at once. I alfo obferved, that the wind coming acrofs the courfe of the fhip, blew the cord: good deal out of the direction of the fpindle, and caufed the line to rub againft the fafeguard-hole, for the button to ftop againft, as above defcribed; which undoubtedly occafioned confiderable friction in that place. But the moft untoward circumftance, that I obferved, was, that being in a rough, but fhort choping fea, and failing obliquely aciofs the waves, the plate would frequently be drawn from one wave to another through the air, without touching the water; and, as it appeared, would jump from one wave to another, the unevennefs of the furface, joined to the quicknefs of the motion, not permitting the plate to follow the depreffion of the water. This evil I endeavoured to remedy; by placing upon the line, at a fmall diftance before the plate, fome hollow bullets, fueh as are made for nets, in order to keep the plate fo low down in the water, as to be below the botton 2 of the waves. This, in part, I found they did; but they, at the fame time, added fo much refiftance, in their paffing through the water, that the inconvenience was as great one way, as the other.

Upon making up the account of this run, I found the number of rotations were lefs, by one full third, than they ought to have been, compared with former obfervations; which afforded me a convincing proof, that this inftrument was confiderably retarded in quick motions.

[12]

The length of the line made ufe of was about $2 a$ fathoms, which I found neceflary, that the water, difturbed by the body of the fhip, might be tolerably fettled before the plate was drawn through it; but this length of line was alfo an inconvenience, as it met with greater refiftance in the water.

Upon the whole, it feems to me, that an inftrument, made as above defcribed, is capable of meafuring the way of a hip at fea, when its velocity does not exceed. 5 fea miles an hour, to a degree of exactnefs exceeding the log. It therefore may be ufeful in the menfuration of the velocities of tides, currents, $\mathcal{E}_{\mathcal{C}}$. and alfo in meafuring diftances at fea in taking furveys of coafts, harbours, Eic. Thus far it feems capable of performing, upon the fuppofition, that it cannot be brought to a greater degree of perfection. But this I am very far from fuppofing: On the contrary, I do not defpair, that it may be brought to anfwer the end of meafuring the way of a chip at fea univerfally; and, for that reafon, it may not be amifs to put down a few hints, concerning the caufe and cure of the errors above-mentioned, for the fake of thofe, who may hereafter be inclined to profecute thefe enquiries*.

[^0]
[13]

It appears then from the preceding oblervations, that the rotation of the plate is confiderably retarded in the quickeft motions of the fhip; and fenfibly fo, in all velocities exceeding 5 miles an hour. This may proceed, firft, from the friction of the machine increafing in a greater proportion than the power to turn it round. Secondly, From the water's being put in motion by the fhip, fo as to follow it in the fame direction, and that to a confiderable diffance aftern. And, Thirdly, from the plate's jumping from wave to wave, when their concavity is great, and diftance little.

The firft may, in fome meafure, be helped, by applying a loaded fly, of a proper fize, to the findle of the machine, which will prevent its fticking faft for a time, and then whirling round with great rapidity, as it is apt to do when the refiftance is great; by which means, the motion will be rendered more equal and uniform, as was juftly obferved to me by my friend Mr. Ellicott of this Society.

Alfo, if the body of the machine were hung, equally poized, upon crofs-centres, like thofe ufed for feacompaffes, or in the manner of a fwivel-gun, as captain Alexander Campbell well propofed; the fpindle of the machine would readily place itfelf in the fame direction with the line that draws it, and thereby avoid unneceffary frictions from the oblique direction of the cord.

[14$]$

The fecond may be helped by placing the machine upon the end of a pole, fantened near the forecaftle, over the fide of the fhip. By this means, a fhorter line will be neceffary, and the plate prevented from working in the more difturbed water at the ftern.

Laftly, Its quitting the water, perhaps, might he helped by joining a fhank of brafs, of fix inches long, and three quarters of an inch diameter, to the forepart of the plate, to which the cord muft be faftened, the ends of the fhank being formed into a figure moft convenient for paffing thro' the water with eafe. The weight of this will caufe the fore-part of the plate to fink fafter than the other, and endeavour to give it a direction down into the water*.

I had intended to have made trial of the effect of thefe alterations, but have been prevented, partly by want of opportunity, and partly from the indifference, with which I found fuch a contrivance as this, even if brought to perfection, was likely to be received by feamen; who, in general, do not feem to be over-fond of making trial of new inftruments, efpecially if propofed by landmen, as, in derifion, they are pleafed to call us.

Indeed it may be objected, that, could we meafure the way of a fhip thro' the water ever fo exactly, unlefs fome method were found out, of afcertaining

the

* Mr. Ruffel's plate was joined to a Thank, who never found it to jump out of the water, at any time, when he made ufe of it.
the currents, E'c.; a fhip's courfe, with refpect to the globe, could not hereby be determined. But then it may be replied, with equal juftice, that it is for want of a means of meafuring the way of a fhip thro' the water (and this compared with other check obfervations), that the drift and velocities of the principal currents have not already been determined.

Mr. de Saumarez, in his fecond paper, of March 1729. makes mention of another machine for this purpofe, which he himfelf acknowleges to be inferior to his former, efpecially in rough weather at fea. But as feveral others have fallen upon, and propofed, a machine fimilar to this; it may not be amifs to add the following remarks upon it. The firf mover, in this, is compofed of four arms, fixed to the bottom of a perpendicular fpindle; each arm is furnifhed with a vane, which opens one way, and fhuts the other, as fome have attempted the making of horizontal windmills. This, by being carried thro' the water progreffively, will turn round, and the fafter, as the fhip moves fafter: But to judge, whether it will do it proportionably in all velocities of the fhip, let us confider,

1. That a good failing fhip will frequently fail at the rate of 10 fea miles (60 to a degree) an hour, which is at the rate of 17 feet per fecond.
2. Suppofing the fide of the fly, where the vanes are clofed, to be retained by the water at reft ; the oppofite fide of the fly, where the vane is open, muft meet the water with a velocity double to that of the
hip,

[16]

Thip, or at the rate of 34 feet in a fecond; as would be the cafe with the upper part of a coach-wheel, whofe velocity thro' the air is double to that, wherewith the coach moves forward.
3. That a plane furface of 3 inches fquare, moving thro' the water with a velocity of 34 feet per fecond, will meet with a refiftance, at leaft, equal to 70 pounds avoirdupoize.
4. That the refiftance, which the open vanes will meet with in the water, will, in fwift motions, be very confiderable, and, of confequence, the fly will move much flower than it ought to do, if thefe refiftances were lefs.
5. That from hence there is much reafon to doubt, whether the refiftance of the medium, and friction of the machine, taken together, will always produce fuch diminution, in the number of turns, as that the number of revolutions, actually fhewn by the indexes, may be the fame when the fame fpace is gone over with a great velocity, as with a fmall one.

$F I N I S$

[^0]: * Upon communicating thefe experiments and obfervations to my ingenious friend Mr. William Ruffel, he gave me an account of a machine, that he had made trial of in a voyage, fome years fince, from the Levant, fo nearly agreeing with the above-defcribed, that one would have imagined we had been of each other's council in defigning them.

